Telegram Group & Telegram Channel
Статзначимость в А/В тестах или немного о том, зачем нужна статистика (часть 1/3)

Сейчас я заканчиваю готовить математическую часть нашего курса «База ML» (в частности, модуль по теорверу) и очень плотно работаю с вопросом «а зачем оно надо?». Топ-1 ответом на вопрос, зачем нужны теорвер и статистика в ML (да и не только в нем) по-прежнему остается проверка статистической значимости. В современном мире мы чаще встречаемся с ней в контексте A/B тестов, когда части клиентов показывают одно, части другое, и из этого эксперимента пытаются сделать выводы. В этих постах вас ждет рассказ в трех частях: 1) введение, 2) непосредственно по теме и 3) некоторые интересные моменты, которые тоже полезно обсудить. Кто знает ответы на вопросы, выделенные жирным в этом посте, могут просто пролистать его и переходить сразу ко второму.

Зачем вообще нужны А/В тесты?

Потребность в А/В тестах возникает тогда, когда мы хотим что-то улучшить. Например, взамен какого-то существующего алгоритма персональных рекомендаций товаров или старого интерфейса мобильного приложения внедрить новую версию. А/В тесты как метод отвечают на вопрос: «Как понять, что это правда будет улучшать важные для нас показатели?»

Посмотреть «стало ли продаж больше» и удовлетвориться такой оценкой нововведения — это очень топорный подход, который сработает только когда бизнес-показатели не зависят от времени и нововведение лишь одно. Обычно это не так. Бизнес растет или угасает, бывает «сезон» и «не сезон». Бывает очень много изменений за месяц, и понять, какое именно из них вызвало эффект, невозможно. Однако многие вещи в коммерческих компаниях (даже самых технологичных) и в 2024 году делаются без А/В тестирования. А еще больше — без оценки статзначимости. К А/В тестам не нужно относиться теологически, но стоит понимать силу и возможности инструмента.

Что такое статистическая значимость и A/A тесты?

Допустим, нет пока никакого нововведения, которое вы будете оценивать в А/В тесте, есть пользователи вашего сайта или приложения, и вы просто делите их на две группы и смотрите на результат в каждой (например, на конверсию посещений в покупки на сайте). Такой тест называется А/А тестом, и, наверное, вас не удивит, что даже при хорошем разбиении на группы результаты в них будут немного отличаться.

Статистическая значимость эффекта в А/В тесте, грубо говоря, означает, что различие между группами заметно больше, чем было бы в А/А тесте, т.е. «есть реальный эффект», а не случайные отклонения. Что это значит для бизнеса? То, что хотя бы при сохранении тех же условий, что и во время проведения А/В теста, эффект от нововведения с большой вероятностью будет какое-то время сохраняться (важное уточнение: эффект может затухать со временем, никто не отменял «эффект новизны»).

#математика
👍218❤‍🔥2🙏1



tg-me.com/kantor_ai/295
Create:
Last Update:

Статзначимость в А/В тестах или немного о том, зачем нужна статистика (часть 1/3)

Сейчас я заканчиваю готовить математическую часть нашего курса «База ML» (в частности, модуль по теорверу) и очень плотно работаю с вопросом «а зачем оно надо?». Топ-1 ответом на вопрос, зачем нужны теорвер и статистика в ML (да и не только в нем) по-прежнему остается проверка статистической значимости. В современном мире мы чаще встречаемся с ней в контексте A/B тестов, когда части клиентов показывают одно, части другое, и из этого эксперимента пытаются сделать выводы. В этих постах вас ждет рассказ в трех частях: 1) введение, 2) непосредственно по теме и 3) некоторые интересные моменты, которые тоже полезно обсудить. Кто знает ответы на вопросы, выделенные жирным в этом посте, могут просто пролистать его и переходить сразу ко второму.

Зачем вообще нужны А/В тесты?

Потребность в А/В тестах возникает тогда, когда мы хотим что-то улучшить. Например, взамен какого-то существующего алгоритма персональных рекомендаций товаров или старого интерфейса мобильного приложения внедрить новую версию. А/В тесты как метод отвечают на вопрос: «Как понять, что это правда будет улучшать важные для нас показатели?»

Посмотреть «стало ли продаж больше» и удовлетвориться такой оценкой нововведения — это очень топорный подход, который сработает только когда бизнес-показатели не зависят от времени и нововведение лишь одно. Обычно это не так. Бизнес растет или угасает, бывает «сезон» и «не сезон». Бывает очень много изменений за месяц, и понять, какое именно из них вызвало эффект, невозможно. Однако многие вещи в коммерческих компаниях (даже самых технологичных) и в 2024 году делаются без А/В тестирования. А еще больше — без оценки статзначимости. К А/В тестам не нужно относиться теологически, но стоит понимать силу и возможности инструмента.

Что такое статистическая значимость и A/A тесты?

Допустим, нет пока никакого нововведения, которое вы будете оценивать в А/В тесте, есть пользователи вашего сайта или приложения, и вы просто делите их на две группы и смотрите на результат в каждой (например, на конверсию посещений в покупки на сайте). Такой тест называется А/А тестом, и, наверное, вас не удивит, что даже при хорошем разбиении на группы результаты в них будут немного отличаться.

Статистическая значимость эффекта в А/В тесте, грубо говоря, означает, что различие между группами заметно больше, чем было бы в А/А тесте, т.е. «есть реальный эффект», а не случайные отклонения. Что это значит для бизнеса? То, что хотя бы при сохранении тех же условий, что и во время проведения А/В теста, эффект от нововведения с большой вероятностью будет какое-то время сохраняться (важное уточнение: эффект может затухать со временем, никто не отменял «эффект новизны»).

#математика

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/295

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Kantor AI from us


Telegram Kantor.AI
FROM USA